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Abstract—With the ever-growing size of deep learning models,
GPU memory is prone to be insufficient during training. A
prominent approach is ZeRO-Offload which moves the optimizer
states to CPU memory and performs parameter update using
CPU. However, the deficiencies of ZeRO-Offload include low
GPU utilization, imperfect overlapping of communication and
computation, and inflexible offloading. In this paper, we leverage
Direct Host Access (DHA) in GPU that can compute data on CPU
memory to form a novel hybrid on-GPU and DHA. We design
and implement MemFerry consisting of an execution scheduler
and a shadow model. The scheduler strategically chooses layers
of parameters for DHA computation and transmits the remaining
parameters to GPU memory simultaneously to shorten forward
propagation time, and further loads DHA parameters to GPU
memory for reducing backward propagation time. The shadow
model presents a unified memory abstraction for the parameter
partitions stored separately in GPU and CPU memories. To
further reduce GPU memory usage, we present GO-MemFerry
along with its dynamic programming algorithm that offloads
gradients to CPU memory via DHA. Our experiments show that
MemFerry trains up to 1.68× faster and GO-MemFerry could
train 1.52× larger model compared to ZeRO-Offload on a single
GPU, and increase training speed by at least 28.1% when scaling
to data parallelism on 8 GPUs.

I. INTRODUCTION

With the penetration of large-scale deep learning such as
ChatGPT (GPT-3.5 and GPT-4) [1] in our daily life and pro-
duction activities, how to train deep learning models efficiently
has attracted great interest. In recent years, the size of deep
learning models has increased rapidly. For instance, BERT-
base [2] developed in 2018 contains 110 million parameters,
while one year after GPT-2 [3] contains 15 Billion parameters,
and today’s LLaMA [4] and GPT-3 [5] contain 70 Billion
and 175 Billion parameters, respectively. However, GPU as
the mainstream computing accelerator has very limited device
memory. The latest Nvidia A100, H100 and H800 have 80G
Bytes of high-bandwidth memory (HBM), and the frequently
used V100 has only 32G Bytes of memory. This imposes a
significant challenge on large-scale model training.

To reduce GPU memory requirements, two key technical
routines have surfaced. One is to segment the parameters,
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gradients, optimizer states and activation (also called train-
ing content) on multiple GPUs such as ZeRO [6] for data
parallelism (DP) and GPipe [7] for pipeline parallelism. The
other is offload training [8]–[11]. The basic idea is to move
partial training content from GPU memory to CPU memory
[12] that is usually an order of magnitude larger, or even to
secondary storages [13], [14]. However, hosting large models
is achieved at the cost of reduced training speed. The most
widely used offload training system is ZeRO-Offload [11]. In
ZeRO-Offload, the optimizer states are placed in CPU memory
and the parameter update is performed by CPU, where the
regular forward propagation (FP) and backward propagation
(BP) are performed in GPU and its memory. Therefore, in
each iteration, the updated parameter will be transmitted to
GPU memory for FP and the gradients are returned to CPU
memory for update. The limited PCIe bandwidth between GPU
and CPU throttles the effective GPU utilization.

In this paper, we conduct a preliminary evaluation on
the DeepSpeed implementation of ZeRO-Offload with three
key observations. (1) GPU streaming processors (SMs) are
severely under-utilized compared to non-offloading (e.g. 63%
vs 99% in BERT-base on Nvidia A100). (2) Communication
and computation are not well overlapped. The GPU idleness
becomes prominent when the parameters are enormous and
unbalancedly distributed on different layers. (3) The memory
offloading is not flexible, especially that no further training
content can be moved to CPU memory. Hence, we raise a
critical question: “Does there exist a new or improved training
paradigm that can achieve higher training speed over ZeRO-
Offload and reduce GPU memory usage at the same time?”

We propose to integrate the Direct-Host-Access (DHA)
functionality provided by mainstream GPUs in offload train-
ing. With DHA, GPU SMs access data in CPU memory,
bypassing CPU cores and GPU memory. DeepPlan [15] is the
first work to introduce DHA into model inference. Inspired
by this, we evaluate the FP and BP times under the on-GPU
and DHA execution modes of offload training. In FP, DHA
outperforms on-GPU on certain large layers considerably. In
BP, DHA is inferior to on-GPUs if the resulting gradients are
stored in GPU memory, but their gaps are greatly reduced
if the gradient transmission times of on-GPU are considered.
Therefore, fusing on-GPU and DHA into a novel hybrid
training paradigm has the potential to achieve our objectives.

We design MemFerry, a novel hybrid training framework
that exploits the benefit of using DHA in FP and meantime



mitigates its side effect in BP as much as possible. MemFerry
consists of an execution scheduler and a shadow model. The
execution scheduler leverages DHA to compute certain layers
of parameters while loading the remainder to GPU memory
in FP for overlapping communication and computation, and
such decisions are made for each layer. In the period between
the end of parameter loading and the beginning of gradient
transmission, MemFerry loads the DHA parameters from CPU
memory to GPU memory that can reduce the BP time most.
After mitigating bubbles in both FP and BP, the per-iteration
time is reduced consequently. The shadow model is a unified
memory abstraction that consists of three parameter partitions
spanning CPU and GPU memories: the DHA parameters
never entering GPU memory, the GFGB (GPU-FP-GPU-BP)
parameters computed in GPU memory, and the DFGB (DHA-
FP-GPU-BP) parameters that are computed via DHA but
shipped to GPU memory for more efficient BP operations. By
utilizing dynamic address mapping, GPU computes the data
in the shadow model without considering its physical space
and without additional CPU data copy.

To achieve flexible GPU memory offloading, we propose
GO-MemFerry that uses DHA to write gradients directly to
CPU memory, thus further reducing GPU memory usage. To
the best of our knowledge, the gradient offloading by DHA
has not been reported before. With the user-specified gradient
reserving factor, we model the optimal gradient offloading as
a dynamic programming problem so as to minimize its impact
on the training speed. With GO-MemFerry, we are eligible to
train even larger models and balance the tradeoff between fast
training speed and low GPU memory usage.

The evaluation results on clusters consisting of Nvidia V100
and A100 show that MemFerry has faster training speed and
lower memory usage compared to the SOTA system during
offload training. MemFerry improves the training speed by
1.32× on average and up to 1.68×. The GPU utilization of
MemFerry and GO-MemFerry is higher than the baseline by
up to 1.27×. At the same time, MemFerry reduces training
memory usage by up to 61.7%. GO-MemFerry reduces the
memory usage by 20.1% on average and up to 74.4%. With
GO-MemFerry, we could train 1.52× larger models compared
to the baseline system. Furthermore, MemFerry is scalable
and compatible with distributed training, with at least 1.28×
speedup when we integrate it into data parallelism.

II. BACKGROUND

A. Memory Usage of DNN Training

We first investigate the memory usage of standard DL
training on the premise of sufficient GPU High Bandwidth
Memory (HBM). All the involved data is usually in the form of
tensors. The data that needs to be maintained on GPU memory
(interchangeable with GPU HBM) during training includes:
1) Parameters. Before the training starts, the parameters of
a model need to be loaded into GPU memory. This memory
usage is exactly the model size. 2) Gradients. During the
backward propagation (BP) stage, the DL framework will
generate gradient tensors of the same size as the parameters

Fig. 1. Training process of ZeRO-Offload.

on the GPU memory. 3) Optimizer States. Optimization
algorithms in DL usually rely on first-order and second-order
momentum to accelerate convergence. For example, the opti-
mizer states of Adam [16] include momentum and variance,
each of which is two times the model size. 4) Activations.
The activations include the intermediate computing results of
each model layer and the loss during BP. If the model input
is complex, especially in large language models, activations
will occupy a large portion of GPU memory. Fortunately, the
recomputation [17] technique discards intermediate activations
when the computation completes so that only the peak size of
activations is counted.

B. ZeRO-Offload Training Paradigm

To reduce GPU memory requirement, ZeRO-Offload [11]
presents a new training framework that uses CPU memory
to supplement the limited GPU memory. The core idea of
ZeRO-offload is to offload the expensive optimizer states and
corresponding update computation to CPU. ZeRO-Offload is
officially implemented in DeepSpeed [18], and its training
process is shown in Figure 1.

Before the training starts, the training system stores model
parameters and optimizer states in CPU memory, and allocates
space for computation in GPU memory. At the beginning of
each iteration, CPU explicitly copies the latest model param-
eters from CPU memory to GPU memory and then performs
forward and backward computations on GPU. During the BP
process, the gradients will be asynchronously transferred to
the CPU memory for model update. Once the BP process is
finished, the optimizer updates the parameters in the CPU. In
this way, the GPU memory consumption of model training is
reduced to the size of activation, parameters, and gradients.

III. MOTIVATION

In this section, we first present key observations on GPU
offloaded training and Direct-Host-Access (DHA). Then we
state our research problem and technical challenges.

A. Limitations of Offload Training

We evaluate the performance of GPU offload training in
DeepSpeed, a widely-used distributed DL framework [19], and
observe three key limitations that motivate our study.
Low GPU utilization. In ZeRO-Offload, GPU does not
perform computation at every moment. Instead, it resides in
the idle state for a period of time at each iteration. Take
the training of GPT-2 as an example, We find that the idle
state occupies around one-third of the GPU runtime, confining
the average GPU utilization to be merely 63.1%. In contrast,



(a) ZeRO-Offload’s execution schedule

(b) MemFerry’s execution schedule

Fig. 2. Training schedule: ZeRO-Offload vs MemFerry.

when the training is carried out in GPU completely, the GPU
utilization is always higher than 80% in every iteration. The
huge utilization gap comes from the data shipment of ZeRO-
Offload, where the GPU utilization is near zero. This indicates
that exchanging data between GPU and CPU is quite slow,
leading to the waste of expensive GPU resources.
Insufficient communication overlapping. We delve into the
execution schedule of ZeRO-Offload to understand the root
cause of GPU under-utilization. ZeRO-Offload leverages the
overlapping of communication and computation to reduce
the offloading overhead. As shown in Figure 2(a), the back-
ward propagation (labeled as ‘BP’) at GPU partially overlaps
the gradient synchronization from GPU to CPU (labeled as
‘Gradients’), and the parameter update (labeled as ‘Update’)
partially overlaps the parameter synchronization from CPU
to GPU (labeled as ‘Params’). However, such overlapping is
imperfect with two bubbles observed in each iteration. Owing
to the layer-wise execution of FP and BP, the communication
of a layer always takes place after the completion of its
computation, generating bubbles in the figure. Even worse,
during BP, the final computed layer is often the embedding
layer in large language models, which have large model sizes
and long transmission latency.
Inflexible GPU offload. The offloading policy of ZeRO-
Offload is inelastic, i.e. a fixed proportion of training contents
is moved to CPU memory. However, the GPU memory budget
needs to be utilized as much as possible to improve the training
throughput. There are contents such as gradients that do not
have to be stored in the GPU memory in its entirety, an offload
training system could offload them when the GPU memory
budget is small. Therefore, memory offloading needs to be
flexible, catering to versatile memory sizes.

B. GPU Computation on CPU Memory

Commodity GPU streaming multiprocessors (SMs) possess
two computing approaches with the data stored in CPU mem-
ory [20]. In Figure 3(a), we illustrate these two approaches
with Nvidia GPU as an example. 1⃝ on-GPU: the data is
ferried from CPU memory to GPU memory (i.e. GPU HBM)
before it is computed by GPU SMs. The advantage of on-GPU
is the high bandwidth between GPU memory and SMs, while

the cost of CPU memory to GPU memory transmission is non-
trivial. 2⃝ Direct Host Access (DHA): The CudaHostAlloc
function is called to allocate the space in CPU memory and
register it to the GPU. In this way, the GPU SMs can access
data in the registered space in the CPU similar to that in
GPU memory, without bypassing the GPU memory. Naturally,
the computation via DHA is slower compared with on-GPU.
However, the DHA computation streams and the CPU-GPU
data transfer streams in GPU SM are independent, so they
can be executed in parallel.

Existing ML frameworks such as Pytorch [19] do not
support DHA-enabled training. Even though ZeRO-Offload
partitions the data in both CPU and GPU memories, the FP
and BP operations are entirely processed via the on-GPU
mode. DeepPlan [15] introduces DHA computation into model
inference. With DHA, GPU can load several layers of model
parameters from CPU memory to GPU memory, and perform
FP computation on other layers in CPU memory in parallel.
To explore the potential of DHA in modeling training, we
profile the efficiency of both on-GPU and DHA approaches
using Bert-base as an example. The results below are measured
from a machine with an Nvidia A100 and 8 CPU cores
interconnected via 100Gbps PCIe switch. We next show the
training performance when we offload part of the training
contents (e.g. parameters and gradients) to CPU memory and
enforce GPU to operate them via DHA.
DHA on CPU parameters in FP. We first measure the FP
times of on-GPU and DHA execution for the parameters stored
in CPU memory in Figure 3(b). Note that both the transmission
time and the computation time are included in the FP time of
on-GPU, while they are inseparable in that of DHA. For the
Embedding and LayerNorm layers, DHA exhibits much shorter
FP time than on-GPU. This is because the transmission time
of these layers is longer than the computation time, and the
on-GPU execution is blocked by the transmission. In contrast,
the FP times of the Linear and Convolution layers are longer
in DHA than in on-GPU. Obviously, for these layers with high
computational loads but small in size, they are more suitable
to be executed via the on-GPU approach.
DHA on CPU parameters in BP. If FP uses on-GPU
approach (load parameters from CPU memory), then the model
parameters are already in GPU HBM during the BP process.
Then, GPU is able to directly use the in-HBM parameters to
perform BP. If DHA is used to perform FP, the parameters
are still in CPU memory which means GPU still needs to use
DHA to perform BP. In Figure 3(c), we show the BP time of
these two approaches. Overall, DHA is slower than on-GPU.
While compared to FP, the performance degradation of DHA
BP is not severe (5 − 10%). This is because deep learning
frameworks have activation retention mechanisms. However,
completely ignoring the performance degradation of DHA BP
can also lead to poor training efficiency.
DHA on CPU gradients in BP. During the traditional BP
process of offload training, gradients will be generated on the
GPU HBM and then transmitted to CPU memory. However,
we can make use of DHA to generate gradients directly



(a) GPU access data in CPU
memory

(b) FP time: on-GPU vs DHA parame-
ters

(c) BP time: in-HBM vs DHA parame-
ters

(d) BP time: in-HBM vs DHA gradients

Fig. 3. DHA and on-GPU execution.

Fig. 4. An example of hybrid execution.

on CPU memory (leveraging DHA write). So we propose
BP integrating DHA gradients as an additional BP execution
approach. Figure 3(d) shows the measurement of BP time
with DHA gradients. Compared to in-HBM BP which directly
generates gradients in GPU HBM, BP with DHA gradients
executes slower. The reason is that the former’s SM can write
gradients to HBM with high bandwidth, but the latter needs
to write gradients to CPU memory through the low-bandwidth
PCIe switch. However, DHA gradients do not need any GPU
HBM buffer to save gradients, which means the GPU memory
requirements for BP are significantly reduced.

C. An Ideal Execution Schedule

The above observations manifest that DHA enriches the
FP and BP execution approaches so as to possibly reduce
the data ferry time between the CPU memory and the GPU
memory. Here, we elaborate on an “ideal” scheduling policy
for offloaded training (in Figure 2(b)) and show how to utilize
the advantages of the hybrid on-GPU and DHA.

To minimize GPU idleness, the execution schedule could
leverage hybrid DHA and on-GPU computation. Recall in
Figure 2(a), two bubbles exist in each iteration of ZeRO-
Offload. The FP bubble is caused by the layer-by-layer param-
eter transmission from CPU memory to GPU memory. Hence,
we can simultaneously load the parameters of some layers to
GPU memory and perform FP computation on other layers
in CPU memory via DHA. Figure 4 compares the execution
modes of a two-layer model. When the two layers are both
performed via on-GPU (labeled as ”All on-GPU”), there is a
long computation halt of waiting for parameters transmission.
But when layer-1 FP is conducted via DHA and layer-2 is on-
GPU, the transmission of parameters is completely hidden and
computation starts with no startup latency. In Figure 2(b), one
can see that “Partial params” transmission executes in parallel
with “Hybrid FP&BP”.

The BP bubble (in Figure 2(a)) appears in the gradient
transmission between BP and update. The gradient is always
generated after BP even if we use a fine-grained schedule.
Hence, unlike hybrid execution in FP, we cannot transmit the

gradient of a layer before it is generated. However, if gradient
transmission could be carefully partitioned, the gradient trans-
mission could perform with parameters update in parallel. This
is reflected in Figure 2(b) that the “gradients” transmission is
partly execution parallel with “BP” and “update”.

Achieving such an ideal runtime scheduler with flexible
GPU memory offloading has three major challenges.

• Complex training decisions in hybrid training. Differ-
ent layers of DL models have different affinities for the
execution approaches. We need to design a fine-grained
execution schedule leveraging the advantages of hybrid
execution training to minimize training time.

• Unified management of GPU and CPU memory. Exist-
ing frameworks lack efficient storage support to manage
normal and DHA training contents on GPU memory and
CPU memory during training. If we blindly copy data
even under an optimal schedule, the additional overhead
may offset the performance gain.

• Flexible GPU memory offloading. The current offload-
ing training designates fixed contents to be offloaded to
CPU memory, which is not flexible and makes peak GPU
memory usage unchangeable. Further offloading data to
CPU memory with a gentle sacrifice of training speed
remains a challenge.

IV. SYSTEM DESIGN

In this section, we present an overview of MemFerry with
three key aspects, including hybrid training modes, efficient
memory management and flexible offloading.

A. System Overview

We briefly describe our technical measures toward the key
challenges raised in Section III, followed by the workflow.
1) Scheduler for hybrid training. (Section IV-B) We design
a new offloading execution scheduling with hybrid training
that overlaps parameter loading time and gradient transmission
time with DHA computation. Our schedule proposes three ex-
ecution modes, GFGB, DHA and DFGB that are automatically
chosen for different layers.
2) Runtime shared memory management. (Section IV-C)
We propose “shadow model”, a logical model on GPU where
its underlying storage space spans both GPU memory and
CPU DHA memory. The shadow model allows all the tensors
to seamlessly switch the underlying storage address between
DHA memory and GPU memory, avoiding unnecessary data
copy at runtime.



Fig. 5. Overview of MemFerry System.

3) On-demand offloading of GPU memory. (Section IV-D)
With DHA, not only the parameter but also the gradient can
be offloaded to CPU memory. The gradient offloading could
further reduce GPU memory usage at the cost of the gentle
increase in per-iteration training time. This means that an
elastic choice in pursuit of fast training speed or low GPU
memory usage is allowed.
Workflow Figure 5 shows the overall architecture of Mem-
Ferry, including the static planning components (Profiler
and Planner), runtime memory management and execution
logic components (Training Engine, DL Optimizer, Recorder).
When a new model training configuration initiates, MemFerry
first passes the training configuration into Profiler. The Profiler
uses different training configurations to evaluate the intra/inter-
layer(s) computation times and the data transmission times.
Then the Planner calls the scheduling algorithm (See in
Section IV-B) based on the profiled information to determine
the specific execution mode for each layer.

Once the planning procedure finishes, MemFerry Runtime
modules start the model training. The Training Engine is
responsible for memory management and data transmission.
At the beginning of training, it distributes parameters to the
corresponding devices and constructs logical and underlying
storage models (including shadow model). During the training
process, it schedules the execution to behave as planned. The
DL Optimizer performs parallel partial gradient transmission
support (DHA parameters) and parameter update by user-
specific training optimizer.

B. Hybrid Training Schedule

We hereby propose the layer-level scheduling algorithm of
MemFerry’s scheduler for general foundation models. The
design goal is to overlap parameter transmission with DHA
computation as much as possible in FP and mitigate the
adverse impact of enabling DHA in BP. We create three
execution modes for the parameter of each layer: GFGB (GPU
Forward GPU Backward), DHA, and DFGB (GPU DHA
Forward GPU Backward). Let us take a layer of parameters
as a unit. In GFGB, the parameters are transmitted from CPU
memory to GPU memory before computation; in DHA, the
parameters in CPU memory are computed by GPU SMs di-
rectly and no further transmission happens; in DFGB, the layer
is transmitted to GPU memory after its DHA FP execution.

Fig. 6. Hybrid training schedule of MemFerry.

DFGB helps to reduce BP time because the on-GPU BP is
faster than the DHA BP (see in Section III-B) so it can be
regarded as a remedy of DHA for BP.

Fig.6 illustrates a training schedule example for a three-
layer model. We stipulate the execution modes of 1-3 layers
to be DHA, DFGB and GFGB respectively. Due to DHA
computation without any transmission, layer 1 and 2 start FP
computation at the iteration beginning. At the same time, the
parameter transmission of layer 3 also starts. When transmis-
sion of layer 3 is completed, MemFerry load parameter of
layer 2 from CPU to GPU for on-GPU BP, which avoids
prolonging the BP time of layer 2. As we hide the gradient
transmission with both BP and update, update does not wait
for all the gradients to be transmitted.

To realize the above schedule, our first step is to profile the
training information for MemFerry’s decision-making. During
the profiling process, we evaluate the parameter transfer time,
FP and BP computation time for each fine-grained layer.
The profiling is executed only once, thus bringing negligi-
ble overhead. We summarize the profiled variable and their
notations below. Here, L: the number of layers; l: the layer
id of model; Al,li+1: computation between layer l and l+1;
Ttrans(l): parameter transfer time of layer l; TFP (l): on GPU
forward time of layer l; TBP (l): on GPU backward time of
layer l; TH

FP (l): DHA forward time of layer l; TH
BP (l): DHA

backward time of layer l; TFP (Al,l+1): forward computation
time Al,l+1; TBP (Al,l+1): backward computation time of
Al,l+1; Sl: size of layer l.

With the profiled information, we introduce our scheduling
algorithm. We logically separate the entire training algorithm
into the forward and backward algorithms.
Forward Algorithm (Alg. 1). Our goal is to minimize the
overall execution time and hide transmission time as much
as possible in computation. The execution plan is denoted
as P and the overall execution time as Tall. We notice that
computation can provide some overlapping time for commu-
nication. This overlapping time is called the reserved overlap
time and denoted as Tres. From the previous observations, we
learn that loading time is often larger than computation time.
Based on this, we make a simple criterion for judging each
layer’s execution mode. When the DHA computation time is
less than on-GPU computation with loading time, using DHA
can reserve more overlapping time for other layers to load
parameters (i.e. Tres increases) and reduce execution time. On
the contrary, using GFGB mode is intuitively better.

As the above intuitive methods do not guarantee the op-
timality, we design a backtracking function. A layer that is
decided to execute using GFGB mode may have two cases.



Algorithm 1: MemFerry FP Algorithm
Input: Ttrans, TFP , TH

FP , TFP (A)
Output: P

1 Tall, Tres, tag ←− 0, 0, −1;
2 for l ←− 1 to L do
3 if TH

FP (l) ≤ TFP (l) + max (Ttrans(l), 0) then
4 Pl ←− DHA ;
5 update(TH

FP (l), TH
FP (l));

6 else
7 if Ttrans(l) < Tres then
8 if tag = −1 then tag ←− l;
9 update(TFP (l), TFP (l)− Ttrans);

10 else
11 backtrack(l, tag, Tall, Tres);
12 end
13 Pl ←− GFGB;
14 end
15 update(TFP (Al,l+1), TFP (Al,l+1));
16 end
17 return P, Tres, tag;

18 Function backtrack(l,bt,T b
all,T

b
res):

19 base←− T b
all + Ttrans(l) + TFP (l)− T b

res;
20 for i ←− bt to l do
21 gain←− Ttrans(i) + TH

FP (i)− TFP (i);
22 T i

all ←− max(Ttrans(l)− T b
res − gain, 0) + T b

all +
(TH

FP (i)− TFP (i)) + TFP (l) ;
23 if T i

all < baseline then
24 Pi, tag ←− DHA, i+ 1 ;
25 base, T b

res ←− T i
all, T b

res + gain;
26 if T b

res ≥ Ttrans(l) then break ;
27 end
28 end
29 update(base,max(T b

res − Ttrans(l), 0) + TFP (l));

30 Function update(to,tr):
31 Tall, Tres ←− Tall + to, Tres + tr ;

Fig. 7. Backtrack to turn execution mode of layer i to DHA.

When the reserve time Tres is greater than its loading time
Ttrans, it has sufficient time to load its parameters and then
compute. When Tres is insufficient to cover its loading time,
we backtrack the previous GFGB layers and modify their
execution mode to DHA mode, which provides more overlap
time for the layer to load parameters.

Figure 7 shows the effect on Tres and Tall when we modify
a GFGB mode layer i to DHA mode. After execution mode
changing, Tres, Tall will increase and we labeled them T i

res,
T i
all. As in the figure, the gain of Tres could be computed as

T i
res − Tres = Tall + TH

FP (i) − TH
FP (i) + Ttrans(i). In the

backtracking process for a new GFGB layer l, after changing
the execution mode of a previous layer i, if the Ttrans(i) −
T i
res−Tres is larger than T i

all−Tall, then the mode change of
layer i successfully hides more parameter load time of layer
l without prolonging overall execution time.
Backward Algorithm. The PCIe communication is idle for
a certain period between the end of parameter loading from
CPU memory and the beginning of gradient transmission back

Fig. 8. The shadow memory management in MemFerry.

to CPU memory. To fully utilize this idleness to reduce the
negative impact of DHA computing, we present the DFGB
execution mode that loads several layers of parameters (after
FP) still in CPU memory into GPU memory. For these layers,
their BP can be performed on GPU so as to reduce the time
of obtaining the gradients. We design a greedy algorithm to
decide whether the layers are executed in DFGB mode.

C. Memory Management

The hybrid training requires MemFerry to be capable of
computing data stored in both the GPU memory and the
CPU memory. This signifies that MemFerry will stipulate the
storage space for different partitions of the model and their
respective access patterns. We then design an abstract model
named shadow model with a set of merits: shared memory of
GPU and CPU, minimal memory copy and compatible to ML
frameworks. We next explain where the model partitions are
stored and how they interact with the shadow model.

We firstly separate the models of the logical level and
the underlying storage level. In Training Engine, a logical
CPU model (for updates), a logical GPU model (for FP&BP)
and CPU-GPU parameters storage are maintained, as the
Figure 8 shows. In the CPU memory, the model parameters
are partitioned into three parts corresponding to the three
execution modes in Section III-C: 1) GFGB parameters that
will be transmitted to the GPU memory; 2) DHA parameters
that will be computed in situ by GPU; 3) DFGB parameters
that will be computed by GPU first and be transmitted to GPU
memory later on. To maximize the parallel computing power
of the CPU SIMD, we aggregate the GFGB parameters into a
long parameter vector. Besides, the CPU memory also hosts
the gradient and the optimizer state just like ZeRO-Offload.
The GPU runtime memory stores the GFGB parameters buffer
and the DFGB parameters buffer in line with the corresponding
parameters on CPU memory.

The logical GPU model used in FP&BP is called the shadow
model. MemFerry adopts a dynamic mapping mechanism
for the underlying storage of shadow model based on the
execution plan. The parameters of the shadow model are
not necessarily located in the GPU memory but may also
be mapped from the CPU parameters. For example, the
parameters executed by the GFGB mode are projected and



transmitted from the long parameter vector to GPU memory;
for the parameters executed by DHA mode, MemFerry directly
delivers their storage pointers to the shadow model, which
could access them directly. As shown in Figure 8, We use three
colors to differentiate the execution modes of GFGB (blue),
DHA (yellow) and DFGB (orange). The DHA parameters are
directly mapped from CPU memory to the shadow model
in GPU. The GFGB parameters are coordinated to a large
contiguous area in CPU memory, and mapped separately to
GPU memory layer by layer when being loaded. The DFGB
parameters have both the DHA storage and the GPU memory
storage, whose pointer can be switched before BP starts.

The shadow model abstraction brings two advantages: 1)
Reducing space allocation and memory copy. by unified
storage of logical parameters. We directly share some of the
DHA parameters of the CPU model with the GPU model,
avoiding redundancy and copying in the memory buffer. 2) Fa-
cilitating dynamic storage switching in DFGB. MemFerry
dynamically modifies the mapping of the physical storage of
the DFGB layer after FP and change it back after BP without
additional burden or affecting the learning procedure.

D. Gradient Offloading

A crucial question regarding DHA-enabled training is
whether the GPU memory requirement can be further relieved.
With the ever-growing model size, MemFerry may still run
out of GPU memory. To achieve the flexible usage of GPU
memory and avoid violating the memory limit, we present GO-
MemFerry based on the aforementioned scheduling algorithms
and observations.

The GPU content of MemFerry includes the partial model
parameters, the gradients generated by BP and intermediate
activation. Further offloading model parameters will signif-
icantly decrease the training speed of layers that are not
suitable for DHA. Offloading intermediate activation values
involves a large number of reads and writes between GPU and
CPU through slow PCIe. Therefore, GO-MemFerry chooses to
offload the gradients. Specifically, GO-MemFerry designates
a CPU memory as DHA memory, mapping it to the gradient
storage of the shadow model. During the BP process, GO-
MemFerry will directly generate the gradient in the CPU mem-
ory, avoiding the transferring and copying of GPU memory.

However, we do not expect gradient offloading to bring
a significant side effect to training speed, and the amount
of memory offloaded should be determined based on the
needs of users. GO-MemFerry does not completely offload
the gradients of the entire model but the gradients of partial
parameters while meeting the user’s memory needs. In Section
III-B, we find that different model parameters have different
performances on gradient offloading. Based on this phe-
nomenon, GO-MemFerry automatically determines the layers
for gradient offload to ensure maximum training speed under
the user-specified memory requirement.

Gradient offload algorithm. We design a gradient offload
algorithm based on dynamic programming. In this algorithm,
users need to specify the total percentage Sreq of gradient on

GPU (named reserve factor), and the algorithm outputs the
specific layers to offload as the gradient offload plan PGO. We
denote the normal on-GPU BP time for each layer as TCBP ,
while the BP time after offloading the gradient by DHA is
TGBP . We default to offload gradients for all layers at the
beginning and then judge the gain TGBP−TCBP in time when
adjusting a layer’s gradient to on-GPU mode. If we define the
problem Al which means the maximum gain offload strategy
of layer 1 to l. Then we could find that for a specific layer i, Ai

is up to subproblem Ai−1. if layer i is choose to keep gradient
offloading then Ai = Ai−1, else if layer i turn gradient to GPU
then Ai = Ai−1+TGBP (i)−TCBP (i). Based on this optimal
substructure, we construct a dynamic programming table Dl,s

from two dimensions: layer id and space. The second axis
of the table represents the size of the space occupied by the
current plan, which is used to limit overall space. The content
of the table is the execution time gain of the current plan (i.e.
A). The recursion formula of D is given by:

Di,j = max(Di−1,j , Di−1,j−Si
+ TGBP (i)− TCBP (i)).

By using dynamic programming to identify the gradient of-
floading plan that has the least execution time, GO-MemFerry
ensures the use of gradient offload meets the memory require-
ment with the least side effect. This allows users to adjust their
memory requirements based on the actual memory size even
after offloading some parameters and optimizer states during
the various training processes. When the specified gradient is
fully offloaded, the GPU memory required for GO-MemFerry
is only the size of partial parameters and activations.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Testbed and DNN Models. Our evaluation is conducted on
two cloud instances, one equipped with 128 CPU cores and 8
Nvidia A100 GPUs of 80GB memory, the other equipped with
12 CPU cores and an Nvidia V100 GPU of 32GB memory.
Both of them are equipped with PCIe 3.0. The software we use
includes Pytorch-1.9.0, Python-3.6 and CUDA-11.7. The foun-
dation models in our experiments include Bert-base/Bert-large
[2], Roberta [21], GPT-2-medium [3] models of transformers
[22] library and transformerXL [23]. In transformerXL, we
manually configure a set of models of different sizes within
the range 0.7B-6.7B in order to evaluate system performance
in a controlled manner. The embedding layer size ranges from
32768 to 130528, the hidden layer size is from 2048 to 4096
and the sequence length is from 378 to 4096.

Baselines and Metrics. Our baseline systems include
DeepSpeed implementation of ZeRO-Offload (DeepSpeed),
native ZeRO-Offload (Native-Offload), MemFerry and GO-
MemFerry. The implementation methods influence the perfor-
mance of ZeRO-Offload and MemFerry. In MemFerry, we do
not destroy the gradients on GPU after they have been used
while DeepSpeed does so. This brings considerable latency
for DeepSpeed to dynamically construct and deconstruct the
gradient buffer. For fair comparison, we implement a native
ZeRO-Offload that is faithful to its original design. Note that



(a) Bert-base (b) Roberta (c) Bert-large (d) GPT-2
Fig. 9. Overall iteration time.

(a) Average GPU utilization (b) Reserve factors
Fig. 10. Utilization and reserve factor of GO-MemFerry.

Fig. 11. Training performance on Nvidia V100 GPU.

for GO-MemFerry, the default configuration is to completely
offload the gradients via DHA. The performance metrics
considered in our evaluation are threefold: per-iteration time,
GPU utilization, and GPU memory usage.

B. Training Efficiency of MemFerry

Speedup over various DNNs. We first evaluate the training
speed of MemFerry with different large language models in
Figure 9. Overall, the per-iteration time is consistently the
highest in DeepSpeed, while it is always the shortest in Mem-
Ferry. In all the models training we performed, MemFerry has
a 10% to 40% improvement in training speed compared to
DeepSpeed and Native-Offload. When using the two smaller
models (Bert-base, Roberta), the training speed of MemFerry
improves by 21.7% to 68.7% compared to the baselines. As
for larger models (Bert-large, GPT-2), the training speedup
is reduced to 7.1% till 32.1%. The main reason is that they
usually require large input such that the computation time
accounts for a larger proportion of the overall training period.

GPU utilization improvement. The GPU utilization when
training GPT-2 is illustrated in Figure 10(a). MemFerry’s GPU
utilization is 18.5% higher than DeepSpeed and 1.5% higher
than Native-Offload. This utilization improvement originates
from MemFerry reducing the GPU idle time during commu-
nication and improving the utilization of GPU SMs through
parallel DHA computation and transmission. Native-Offload
has higher utilization than DeepSpeed because the latter needs
time to allocate and reclaim gradient memory. GO-MemFerry

has the highest utilization (27% higher than DeepSpeed), as it
parallel executes gradient computation and transmission.

C. Training Memory Usage
Larger model size limitation. To demonstrate the training

performance of MemFerry and GO-MemFerry under limited
training resources, we conduct LLM training on the V100
GPU machine. In Figure 11, we configure models of different
sizes with a training batch size of 1 MemFerry is still the
fastest in all training configurations, 1.12× faster than the
baseline. When GO-MemFerry fully offload gradients in this
figure, the training speed is the slowest, but only 3.4% lower
than the baseline. This is because the lower PCIe bandwidth
severely affects the write operations of DHA gradients. As
the model size increases, Native-Offload, DeepSpeed, and
MemFerry all experience memory overflow. After the model
is larger than 2.4B, only GO-MemFerry can train normally.
Overall, GO-MemFerry can support models that are 1.52×
larger than DeepSpeed ZeRO-Offload with limited memory.

Memory usage reduction over various DNNs. We then
study the peak GPU memory usage in an entire training
iteration. In Figure 12, MemFerry reduces GPU memory
by average 40.1% compared with DeepSpeed when training
smaller language models. Compared to baselines, MemFerry
uses DHA computing to move some parameters from the
GPU to the CPU. GO-MemFerry has a memory reduction
of 17.6% even compared to MemFerry, as the gradients are
completely removed from the GPU memory. When training
GPT-2, MemFerry saves the GPU memory by an average
of 1.4%. On average, MemFerry and GO-MemFerry reduce
25.4% and 41.6% GPU memory.

Flexibility of GO-MemFerry. While offloading gradients
within the user-specified memory size based on the reserve
factor, GO-MemFerry minimizes the degradation in the train-
ing speed. In Figure 10(b), we measure the iteration time of
GO-MemFerry when the gradient reserve factor (larger means
keep more gradients on GPU) varies. As the reserve factor
increases, iteration time gradually decreases due to less DHA
gradient write. The curves are convex, indicating that GO-
MemFerry’s gradient offload algorithm offloads the gradients
with the smallest performance loss to meet users’ needs.
When the reserve factor increases, GO-MemFerry leans to
MemFerry, resulting in a higher training speed.

D. Scalability of MemFerry
Scalability to model size. Figure 13(a) shows the training

speeds of TransformerXL with different parameter sizes where



(a) Bert-base (110M) (b) Roberta (110M) (c) Bert-large (340M) (d) GPT-2 (355M)
Fig. 12. Maximum memory usage.

(a) Iteration time (b) Memory usage
Fig. 13. Training on large language models.

(a) Scalability to number of GPUs
(batch size = 16)

(b) Scalability to batch size (8
GPUs)

Fig. 14. Performance in multi-GPU training.

the batch size is set to 8. MemFerry always possesses the high-
est training speed, 1.32× faster than DeepSpeed on average.
As the model size increases, the speed advantage of MemFerry
decreases. When training the 1B model, MemFerry has a train-
ing speed improvement of 1.37× compared to DeepSpeed,
while training the 6.7B model the improvement is 1.26×. This
is because when the model is larger, the computation time
during the training process also significantly increases. Figure
13(b) shows the memory usage. Overall, GO-MemFerry uses
the least space, with an average reduction of 21.6% compared
to DeepSpeed. As the model size increases, the maximum
memory savings of GO-MemFerry remain between 18% and
22%. indicating that GO-MemFerry can reduce the memory
requirements for large-scale model training.

Scalability to multiple GPUs. MemFerry supports data
parallel training that “aggregates” the computing power of
multiple GPUs (using Pytorch DataParallel). As shown in
Figure 14(a), the iteration time decreases with the number of
GPU increases when we train a 4.3B model with a fixed global
batch size. Specifically, MemFerry takes 5.41s to complete an
iteration on average using a GPU and 4.12s using 8 GPUs.
As the training scale increases, inter-GPU communication
becomes the new bottleneck that limits the performance of
MemFerry. However, MemFerry still ensures a better perfor-
mance when training with multi-GPUs. For example, when
scaling to training with 8 GPUs, MemFerry increases the
training speed by 28.1% compared to DeepSpeed and 19.1%

compared to Native-Offload.
Scalability to batch size. As training can be conducted

with different batch sizes for best performance, we study
MemFerry by assigning larger batch sizes to a 6.7B model
training in 8 GPUs. As shown in Figure 14(b), we observe
that MemFerry always outperforms all the baselines when the
batch size increases. Specifically, when the batch size is 128,
MemFerry and GO-MemFerry trains faster than DeepSpeed by
1.21× and 1.16× respectively. This observation means that if
resources are limited to training models and offloading is used,
MemFerry could always improve the training efficiency.

VI. RELATED WORK

Offload Training (or heterogeneous training). To train
large-scale models with limited GPU memory [8]–[10], [24]–
[28], previous works offloaded the model training content
to devices with larger memory (such as CPU and NVMe
[13], [14], [29]). L2L [12] offloaded parameters into CPU
retrieving them as needed for computational processes during
training. MemFerry continues the approach of CPU offload
while introducing GPU DHA, into training, providing a new
execution schedule and gradient offloading method.

DL Systems with Direct-Access. In model inference, Deep-
Plan [15] leveraged DHA to serve better inference, which
achieves layer-wise communication overlap with computa-
tion. In deep learning training, systems [30], [31] leveraged
DMA [20], a GPU feature for unified cross-device data man-
agement, to reduce data copying and achieve computation-
communication overlap for specific models (e.g. CNNs,
GNNs). MemFerry provides a training paradigm for general
offload training by leveraging DHA not only to overlap trans-
mission but also to reduce the training memory requirement.

VII. CONCLUSION

In this paper, we propose MemFerry, which leverages hybrid
GPU execution approaches to accelerate offload training and
reduce memory usage. Our key contribution is to prove that
GPU’s DHA feature can potentially benefit deep learning train-
ing. We integrate the GPU DHA feature into offload training
and design hybrid training patterns that can fully overlap the
transmission of offload training. We propose a unified man-
agement abstraction called the shadow model which removes
redundant memory copying. We further propose a gradient of-
fload strategy - GO-MemFerry which reduces training memory
requirement on demand. Evaluations show that MemFerry can
speed up offload training meanwhile significantly reducing the
memory requirement for training.
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